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SYNOPSIS 

Neural network computing is one of the fastest growing fields of artificial intelligence due 
to its ability to “learn” nonlinear relationships. This article presents the approach of back 
propagation neural networks for modeling of free radical polymerization in high pressure 
tubular reactors. Industrial data were used to train the network for prediction of the tem- 
perature profile along the reactor, as well as polymer properties such as density, melt flow 
index, and molecular weight averages. Comparisons were made between the neural network 
and mechanistic model predictions published in the literature. Results showed the promis- 
ing capability of a neural network as an alternative approach to model polymeric systems. 
0 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

The development of kinetic models for free radical 
polymerization is not an easy task, especially when 
the process is carried out under conditions of high 
pressure and temperature. The difficulties lie with 
the complex reactions occurring simultaneously in- 
side the reactor, as well as the poor understanding 
of flow patterns and of heat and mass transfer for 
mixtures involving polymers. Furthermore, the huge 
number of kinetic parameters that need to be esti- 
mated also constitutes an additional obstacle for so- 
phisticated models. 

In light of this difficulty of developing mechanistic 
models, we explored an alternative way to model 
polymeric processes based on neural network sim- 
ulation. The neural network algorithm consists of a 
set of processing units, called “neurons,” connected 
to one another. By adjusting parameters in the cou- 
pling between neurons, the network is capable of 
learning from a set of numerical data corresponding 
to the input variables and the desired outputs. In 
this article, three sets of industrial data were used 
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for the network learning process. The prediction 
obtained from the trained network for a different 
set of input variables was found to compare favor- 
ably with the actual output values for the system. 

REVIEW 

High Pressure Process for Olefin Polymerization 

Several high pressure tubular reactor models have 
been published in the literature, 1-7 one of the most 
comprehensive being that of Zabisky et al.7 In their 
model, a kinetic mechanism was employed to de- 
scribe the polymerization rate and polymer prop- 
erties. Multiple feeding points for monomers, ini- 
tiators (oxygen and organic peroxides), and chain 
transfer agents along the reactor were also taken 
into account. Figures 1 and 2 show, respectively, a 
typical industrial high pressure process diagram and 
a schematic of a tubular reactor for low-density 
polyethylene production. In this process, monomers 
are compressed through two stages (primary and 
secondary compressors) up to the pressure of syn- 
thesis (2000-3000 kgf/cm2) inside the reactor. Ox- 
ygen and organic peroxides are used as free radical 
generators during the polymerization reaction. Side 
feeds of monomers, chain transfer agents, and ini- 

1277 



1278 CHAN AND NASCIMENTO 

Figure 1 
copolymers. 

Simplified process flow sheet for synthesis of low-density polyethylene and 

tiators are possible along the reactor in order to pro- 
duce a large variety of product grades with different 
molecular and rheological characteristics. Because 
the polymerization reaction is highly exothermic, 
the heat released is removed by cooling water in the 
jacket around the reactor. In order to increase the 
heat transfer capacity, the jacket is divided into sev- 
eral heating or cooling sections. Insights about the 
mechanistic modeling techniques generally used in 
the literature will be discussed later. 

Neural Networks 

Neural networks have been attracting great interest 
as predictive models, as well as for pattern recog- 
nition. According to Hernhndez and Arkun’ ( 1992), 
“there has been a recent explosion of applications 
of neural networks to areas relevant to chemical en- 
gineers,” following the works of others?,” 

The potential for employing neural networks in 
the chemical industry is tremendous, because non- 
linearity in chemical processes constitutes the gen- 
eral rule. Neural networks possess the ability to 
“learn” what happens in the process without actually 

modeling the physical and chemical laws that govern 
the system. The success in obtaining a reliable and 
robust network depends strongly on the choice of 
the process variables involved, as well as the avail- 
able set of data and its domain used for training 
purposes. 

There are two main structures of neural networks 
commonly employed feedfonvard networks (Fig. 3) ,  
in which information propagates only in one direc- 
tion,” are useful for steady-state modeling; and re- 
current networks (Fig. 4) are employed when long- 
term prediction is requiredL2 and are therefore more 
appropriate for dynamic models. 

In general, the networks consist of processing 
neurons (represented by circles) and information 
flow channels between the neurons, usually denom- 
inated interconnects. The boxes represent neurons 
where the inputs to the network are stored. Each 
processing neuron first calculates the weighted sum 
of all interconnected signals from the previous layer 
plus a bias term, Eq. ( 1 ) , and then generates an 
output through its activation function, Eq. ( 2 ) .  The 
most widely used networks are made up of three 
layers, l1 the input, hidden, and output layers. 
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Water or steam inflow and outflow 

Preheat zone Reaction zone Product cooling zone 

1 1 Heating/cooling jacket 

K\l Reaction mixture 

Figure 2 Schematic of high pressure tubular reactor with multiple feed points. 

n 
The system learns by making changes in its 

weights ( WU+) and the input and output variables 
chosen for the network training are normalized. At 

1 ( ) present, the most extensively adopted algorithm for 
the learning phase is the back propagation algo- 

(') Sv = C Wu.uxu + Wn+, , v  

f ( S " )  = ~ 

u=1 

1 + e-'" 

n 

l(bias) - 

input layer hidden layer output layer 

Figure 3 Multilayer feedfonvard neural network. 



1280 CHAN AND NASCIMENTO 

1 

input layer hidden layer output layer 

Figure 4 Recurrent neural network. 

rithm,13 which is a generalization of the steepest 
descent method. It consists of minimizing the mean 
square error ( E )  , defined as: 

where yk comes from the r input-output pairs of data 
( x ,  y )  available for training the network and Ok is 
obtained from the output layer signal, calculated by 
the following expression: 

In the traditional gradient approach for mini- 
mizing the mean square error E with respect to the 
weights W+, one calculates the derivatives dE/ 
a W,," and then moves in the steepest descent direc- 
tion. This technique requires using all the input- 
output pairs to determine the gradient. The back 
propagation algorithm also uses gradient informa- 
tion to change the weights; however, it is calculated 
with respect to only one input-output pair at a time.' 
This input-output pair is introduced to the network 
and the weights are changed according to the fol- 
lowing expression for the output layer: 

where 77 represents a damping or accelerating factor. 
For the hidden layer, the expression below is used 

At each iteration, the weights between the hidden 
and output layers are adjusted first; subsequently, 
the weights between the input and hidden layers are 
changed. After presentation of the first input-output 
pair, one proceeds with the second pair, and so on. 

FREE RADICAL COPOLYMERIZATION: 
MECHANISTIC MODELING OVERVIEW 

Most of the mechanistic models in the literature 
employ a proposed kinetic mechanism and knowl- 
edge of flow patterns and, heat and mass transfer 
to describe all of the important chemical and phys- 
ical phenomena that occur in the reactor. The re- 
actions outlined below are widely employed to model 
free radical copolymerization  kinetic^.'^-'^ The ter- 
minal model assumption is also frequently consid- 
ered to be adequate, that is, the rate of reaction de- 
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pends only on the terminal unit on the chain and, 
thus, penultimate effects are neglected. 

Organic peroxide initiation: the decomposition of 
an organic peroxide initiator, I ,  to form free radicals 
R ,  

kd 
I - n - R  

where n is the number of radicals formed per initi- 
ator molecule, normally two. 

Oxygen initiation: oxygen may react with mono- 
mer to form peroxides, which then decompose to 
initiate the polymerization. 

O2 + M % 2 R .  

Propagation: reaction of monomer of type i with 
radicals of length r terminating in a monomer unit 
of type j ,  

Rj(r )  + Mi 2 Ri(r  + 1). 

Termination by combination: bimolecular reac- 
tion between two radicals to form one dead polymer 
chain, 

R i ( r )  + R j ( s ) Z P ( r + s ) .  

Termination by disproportionation: bimolecular 
reaction between two radicals to form two dead 
polymer chains, 

R , ( r )  + R,(s) % ! ' P = ( r )  + P ( s )  

or P ' ( s )  + P ( r ) .  

The disproportionation reaction forms a dead 
chain with a terminal double bond, denoted by the 
superscript = . 

Transfer to chain transfer agent, modifier, or sol- 
vent: transfer of reactivity from radical type j to 
chain transfer agent T S ,  to form a dead polymer 
chain and a transfer radical TS*, 

R j ( r )  + 7's 2 TS* + P ( r ) .  

along the chain. If monomer is present, its propa- 
gation will lead to long-chain branching ( LCB) , 

R,(r) + Pi(s) % R : ( s )  + P ( r ) .  

Followed by propagation 

where R' denotes an internal radical. 
Backbiting reaction: the radical center is trans- 

ferred to a site along the same chain, leading to 
short-chain branching (SCB) , 

R j ( r )  3 R i ( r ) .  

Followed by propagation 

R : ( r )  + M j 3  R,(r + 1) (SCB). 

@-scission of internal radical centers: besides the 
propagation reactions, internal radicals may undergo 
@-scission to form a smaller radical and a dead poly- 
mer chain with a terminal double bond, 

k 6  R:(r )  + P " ( s )  + R j o r i ( r  - s )  

or l " ( r  - s )  + RjOri (s ) .  

Depending on the complexity of the model being 
developed, additional reactions can be included in 
the kinetic mechanism. For more details see Zabisky 
et aL7 

Method of Pseudokinetic Rate Constants 

In order to simplify the mathematical equations for 
copolymerization, the method of pseudokinetic rate 
constants is frequently u ~ e d . ~ ~ ' * ~ ' ~  Pseudokinetic rate 
constants are the sum of individual rate constants 
for each elementary reaction weighed by the fraction 
of monomer or radical type in the reactor. Thus, 
instead of writing down all the reactions between 
all monomer or radical types, one formulates the 
equations in terms of their overall concentrations, 

kglobal = 2 ki,WLAi ( 7 )  
Transfer to polymer reaction: involves the trans- 

fer of reactivity from a radical of type j to an i type 
monomer unit in a dead polymer chain to form a 
radical with the active center located somewhere 

i , j  

where w,, A, represent either monomer or radical 
mole fractions in the reacting mixture. 
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It should be noted that the use of pseudokinetic 
rate constants when branching reactions are in- 
volved is not strictly correct, because the composi- 
tion of the chains will vary with monomer conver- 
sion. In the case of a tubular reactor, the conversion 
is relatively low ( - 20% ) and the comonomer com- 
position small, making compositional drift virtually 
insignificant; therefore, pseudokinetic rate constants 
should be a valid approximation. 

Mass Balances 

For a plug flow tubular reactor at steady state, the 
mass balance of species Xi can be represented by 
the following expression: 

-- dFxl - A,Rxr 
d L  

where A, is the cross section area of the reactor, 
FXi represents the molar flow rate of species X i ,  and 
RXi denotes the rate of reaction of species X i .  

Because elementary reactions are assumed, the 
rate of reaction for all species is first order with re- 
spect to each reactant involved. 

Energy Balance 

Heat transfer along the reactor is an important pa- 
rameter for predicting the rate of polymerization in- 
side the reactor. For every 10°C rise in temperature, 
the rate of polymerization may roughly double. The 
resulting energy balance on the reactor side is: 

+ (%)(T, - T )  (9)  

where C, is the heat capacity of the reaction mixture; 
AH denotes the average heat of polymerization (en- 
ergy released per mole of monomer reacted, defined 
as a positive number); Pi indicates moles of mono- 
mer i that have reacted to form polymer; rint rep- 
resents the internal radius of reactor; T, is the jacket 
temperature; U indicates the overall heat transfer 
coefficient; and W denotes the mass flow of the re- 
action mixture. 

~ 

Pressure Profiles 

Because the rate of reaction and the thermodynamic 
properties of the reaction mixture are functions of 

the pressure, it is important to take into account 
the pressure change down the reactor length. The 
differential equation for the pressure drop down a 
tube in the turbulent regime is described by: 

- -  d P  
dL 
-- 

where is the fanning friction factor, p the solution 
density, u the linear velocity, and g, the gravitational 
constant, used to convert kgm (kilograms mass) to 
kgf ( kilograms force). 

Molecular Weight Averages 

In order to predict physical and rheological prop- 
erties of the polymer produced, a knowledge of the 
molecular weight distribution is of great importance. 
For such complex polymerization kinetics, calcula- 
tion of the entire molecular weight distribution is 
rather difficult. Fortunately, most polymer proper- 
ties can be correlated with molecular weight aver- 
ages, reducing the number of equations to be solved. 
Among the different techniques available, 7,21 the 
method of moments provides a relatively simple way 
of calculating the important averages. The moments 
of the molecular weight distribution are obtained by 
writing mass balances for the radical and polymer 
molecules of chain length r ,  multiplying each term 
by the appropriate power of r and summing the terms 
from r = 1 to co. 

The moments of the polymer radical size distri- 
bution are defined as: 

and similarly, the moments of the polymer size dis- 
tribution are defined by 

One of the disadvantages of using the method of 
moments is the closure problem. Depending on the 
kinetics adopted, the moments of the polymer size 
distribution may be a function of the higher mo- 
ments. When this occurs, one must arrive at a clo- 
sure technique that will adequately predict the 
higher moments as a function of the lower ones. For 
a more detailed discussion concerning the moment 
closure problem, see Zabisky et al.7 
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The number and weight average molecular 
weights of a polymer can be calculated, respectively, 
by: 

where m represents the molecular weight of the 
monomer. 

The parameter that indicates the width of the 
molecular weight distribution is the polydispersity 
index, defined as: 

~ 

MW 
M n  

P I = = .  

Notice that the lower limit of the polydispersity in- 
dex is unity. In this case, the polymer is said to be 
monodisperse, that is, all the molecules have the 
same length. 

Branching Frequencies 

The SCB and LCB may have a considerable effect 
on polymer properties. The more SCBs incorporated 
along the polymer chain, the lower the polymer den- 
sity will be; LCBs affect the optical and rheological 
properties. The SCBs are produced by the backbiting 
reaction; therefore, the number of SCBs produced 
is: 

LCBs are produced by the transfer to polymer 
reaction. Thus, the total number of LCBs produced 
is given by: 

where KscB and K L C B  are overall reaction rate con- 
stants. 

The number of SCBs and LCBs per 1000 carbon 
atoms is given by (assuming two backbone carbon 
atoms per monomer unit) : 

Given the mechanistic model presented above, the 
resulting number of coupled ordinary differential 
equations is quite large. Additionally, attempts to 

validate the model require that a substantial number 
of kinetic parameters be estimated from experimen- 
tal data under conditions of high pressure and tem- 
perature. In light of these difficulties, a different way 
of modeling the system is presented hereafter. 

NEURAL NETWORK APPROACH 

As an alternative way of modeling the same poly- 
merization system, the technique of neural networks 
is proposed. This method requires reliable data to 
train the network, but once the learning process is 
completed, the network will be capable of making 
predictions in a much faster manner than any re- 
alistic mechanistic scheme. 

Neural networks are characterized by the large 
number of parameters involved (weights) due to the 
high connectivity among the neurons. In training a 
network, we intend to find an optimum set of weights 
that minimize the mean square error. For small data 
training sets, the number of weights to be estimated 
can be higher than the number of available data, 
and the error in fitting the nontrained data will de- 
crease initially, but then will increase as the network 
becomes overtrained. In this case, one must check 
the results for the nontrained data sets. In contrast, 
when the number of weights is smaller, the overfit- 
ting problem is not crucial.22 

Experimental Data Acquisition 

The data used for the training process were collected 
from an actual industrial tubular reactor for low- 
density polyethylene production. The reactor, about 
1300-m long, is surrounded with heating or cooling 
jackets. In order to monitor the temperature profile 
constantly along the reactor, an array of 116 ther- 
mocouples placed at  strategic points was installed 
and their values registered in the control room. The 
presence of 116 thermocouples along the reactor 
provides operational flexibility, especially in the case 
when modifications in side feed positions are nec- 
essary. For a fixed set of side feed configurations, 
the temperature control can be carried out by only 
60 thermocouples. The input and output variables 
chosen for network training are specified as follows: 

Input Variables 

1. Reactor pressure; 
2. mass flow rate of monomer at the front feed; 
3. mass flow rate of monomer at  the first side 

feed; 
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4. 

5. 

6. 
7. 
8. 

9. 
10. 

11. 

12. 

13. 

14. 
15. 
16. 

mass flow rate of monomer at the second side 
feed; 
mass flow rate of monomer at the third side 
feed; 
mass flow rate of oxygen at the front feed; 
mass flow rate of oxygen at the first side feed 
mass flow rate of oxygen at the second side 
feed 
mass flow rate of oxygen at the third side feed; 
mass flow rate of chain transfer agent at the 
front feed; 
mass flow rate of chain transfer agent at the 
first side feed; 
mass flow rate of chain transfer agent a t  the 
second side feed; 
mass flow rate of chain transfer agent a t  the 
third side feed; 
mass flow rate of organic peroxide; 
mass flow rate of steam in the jacket; 
temperature of monomer feeds. 

Output Variables 

1. Density of the polymer produced ( p )  ; 
2. melt flow index of the polymer produced 

3. number average molecular weight of the 
polymer produced (K) ; 

4. weight average molecular weight of the poly- 
mer produced (K) ; 

5. monomer conversion at the end of the reactor 
(Conv.); 

(MI);  

6. to 65. selected temperatures along the reac- 
tor. 

For each inputloutput variable, four sets of data 
corresponding to different grades of commercial low- 
density polyethylene with varying operating con- 
ditions were prepared. The data acquisition was 
programmed according to a preset schedule while 
the reactor was operating under quasisteady-state 
conditions (all resin properties within the desired 
product specifications). In order to reduce random 
process fluctuations further, each data set is actually 
the mean value of three instantaneous readings dur- 
ing the same production campaign. Density, melt 
flow index, and molecular weight average properties 
were obtained by using a gradient column, a plas- 
tometer, and gel permeation chromatography 
( GPC ) , respectively. 

Neural Network Training 

After collecting the data, the input/output variables 
were normalized. In our network training process, 
only three data sets were used, the remaining one 
being employed to check the validity of the trained 
network. In this work, we adopt the back propaga- 
tion algorithm with only one hidden layer in our 
network. A back propagation network learns by 
making changes in its weights. In order to select the 
optimum number of neurons to be used, a sensitivity 
analysis between the mean square error and the 
number of neurons was carried out for 10.000 iter- 

1 2  3 4 5 6 7 a 9 10 

Number of Hidden Neurons 

Figure 5 Residual sensitivity analysis after 10,000 iterations. 
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Figure 6 
X experimental data. 

Neural network predictions for reactor temperature profile : training data set 

ations. The results are shown in Figure 5. Note that 
the number of neurons which provides the smallest 
mean square error is seven, but we chose to use six 
rather than seven neurons because the results for 
the nontraining set were satisfactory compared to a 
seven neuron network, thus reducing the danger of 
~ v e r f i t t i n g . ~ ~  

The network training was performed by using 
software developed in our laboratory for imple- 
menting the back propagation algorithm with a dy- 
namic damping or accelerating factor. 

RESULTS AND DISCUSSION 

After obtaining the trained network with appropri- 
ate weights that minimize the mean square error, 
evaluations were made of the network performance. 

Table I Network Predictions vs. Plant Data 

Figure 6 shows the fit of the reactor temperature 
profile for one of the training data sets against the 
actual plant temperatures. Note that the learning 
of the network is quite good for temperature re- 
sponses, as well as for the other properties indicated 
in Table I. Figure 7 illustrates the reactor temper- 
atures predicted by the network for the set of data 
not used in the training process. 

Analyzing the results provided by the network 
for the nontraining data set, one finds that both the 
temperature profile and the polymer properties are 
within acceptable margins of error. Because molec- 
ular weight average data obtained from high tem- 
perature GPC may have an uncertainty of up to 20%, 
the network predictions of and in Table I 
fall within the confidence interval of the experi- 
mental data. 

Training Set Nontraining Set 

1st 2nd 3rd 4th 

Network Actual Network Actual Network Actual Network Actual 

0.9204 0.9204 0.9235 0.9235 0.9215 0.9215 0.9227 0.9228 (5) 
MI (&) 0.4796 0.4800 0.3099 0.3100 0.8399 0.8400 0.2988 0.2500 

19005 19000 21000 21000 16000 16000 20827 23000 M, (5) 
(5) 170041 170000 190003 190000 150006 150000 187320 200000 

Conv. ( W )  22.3 22.3 22.9 22.9 22.8 22.8 22.7 22.8 
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Figure 7 
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Neural network predictions for reactor temperature profile : nontraining data 

Predictions Between Mechanistic Model and 
Neural Network 

As described in previous sections, a mechanistic 
model is composed of a set of mass and energy bal- 
ances that represent the physical and chemical phe- 
nomena occurring in the system under study. Gen- 
erally speaking, a mechanistic model can be a pow- 
erful tool for making predictions due to its broad 
range of applicability. However, the necessity of es- 
timating a large number of parameters and solving 
a complex set of differential and algebraic equations 
constitutes an undisputable disadvantage. In this 

section, we compare the results predicted from the 
neural network with those obtained by using the 
mechanistic model proposed by Zabisky et al.7 for 
the nontraining data set. Figures 7 and 8 represent 
the simulations of temperature profiles using the 
neural network and mechanistic models, respec- 
tively, against actual plant data. Table I1 shows 
comparisons of the other output variables, as well 
as their relative errors. 

Analyzing the results in Table 11, one finds that, 
for almost all output variables, the neural network 
provides better predictions than the mechanistic 
model. Special attention should be given to the re- 

1 . 0  

0.8 

0.6 

0.4 

Jz' 
I Experlmental data 

Contlnuous line - Slmulatlon 

0.0 -A-- 
1.0  

o-2 L 
0.0 0.2 0.4 0.6 0.8 

Fraction of Reactor Length 

Figure 8 Reactor temperature profile : mechanistic model X experimental data. 
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Table I1 Mechanistic Model X Neural Network X Plant Data 

Mechanistic Model Neural Network 

Actual 
Rel. Error 

(%o) 
Rel. Error 

(%I 

0.9228 0.9223 

MI (&) 0.25 0.39 

23000 17900 

200000 2 12000 

22.8 21.1 

M, (5) 
M, (5) 
Conv. (%) 

-0.05 

~~ ~ 

0.9227 -0.01 

56 0.30 20 

-22.2 20827 

6.0 187320 

-7.5 22.7 

-9.5 

-6.3 

-0.44 

sults for the melt flow index (MI).  In the mecha- 
nistic model, the MI value is not calculated directly 
from process variables, but obtained from an em- 
pirical correlation with the weight average molecular 
weight (z) , resulting in a larger intrinsic error. In 
contrast, the melt flow index is a direct output vari- 
able in our neural network training. For this reason, 
it is more valid to compare the %values than MI. 

Despite the fact that both the mechanistic and 
neural network models provide reasonable predic- 
tions with respect to the experimental data, it is of 
fundamental importance to know whether they ex- 
hibit similar trends for the different input values. 
The sensitivity analyses we performed show the 
same tendency for all output variables; and Figure 

2.00 2-10 i- 
v, 
0 
x 

9 illustrates the result for the weight average mo- 
lecular weight versus pressure over a typical range 
of industrial operating conditions. It is important 
to point out that the sensitivity of the outcome de- 
pends essentially on the domain of the data sets used 
in the network training process. If the training data 
are restricted to a narrow range, the output may be 
fairly insensitive to perturbations and hence might 
eventually give unrealistic predictions. 

CONCLUSIONS 

In this article, we have successfully modelled a free 
radical polymerization in a tubular reactor under 

1-90 

1.80 

1.70 

1.60 

I M e c h a n i s t i c  Model 
0 N e u r a l  N e t w o r k  
0 E x p e r i m e n t a l  

1.50 

1.40 ' I I I I I 

2300 2400 2500 2600 
2 

Pressure (kgf/cm ) 

Figure 9 
anistic model X neural network. 

Behavior of weight average molecular weight with respect to pressure : mech- 
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high pressure via the neural network technique. The 
back propagation algorithm with only one hidden 
layer (six neurons) was adopted in the network. The 
training of the network was carried out by using 
software developed in our laboratory for minimizing 
the mean square error with respect to the weights. 
The outputs of the trained network are comparable 
to or better than those obtained from a mechanistic 
model published recently in the literature, indicating 
the potential of network predictions. 

Although neural networks are relatively easy to 
develop and employ to model and simulate systems, 
there are several difficulties which should not be 
overlooked the reliability of the network depends 
on the quality and range of the training data; the 
network training process can sometimes be tedious 
and time consuming; and in some cases, convergence 
can be slow and difficult, requiring the use of more 
efficient optimization techniques. 

The authors would like to thank Poliolefinas S. A. for 
providing the industrial data used in this work and Prof. 
Frank Quina for revising the manuscript. 

NOMENCLATURE 

cross section area 
heat capacity of the reaction mixture 
fanning friction factor 
molar flow rate of species Xi 
gravitational constant used to convert 

rate constant with appropriate units for the 
order of reaction 

overall pseudokinetic constants 
length of the reactor 
number of long-chain branches in the re- 

molecular weight of monomer 
melt flow index 
number average molecular weight 
weight average molecular weight 
number of radicals formed per peroxide 

output layer signal from the neural network 
reactor pressure 
moles of monomer i bound as polymer 
polydispersity index 
polymer molecule of chain length r 
polymer molecule of chain length r with a 

ith moment of the polymer size distribu- 

kg(mass) to k ( f o r c e )  

action volume 

molecule 

terminal double bond 

tion 

monomer units 
internal reactor radius 
radicals of chain length r 
internal radical of length r 
rate of reaction of specie Xi 
number of short-chain branches in the re- 

action volume 
sum of all interconnected signals from the 

previous layer in the neural network 
reactor temperature at length L 
jacket temperature at length L 
linear velocity 
overall heat transfer coefficient 
mass flow rate of the reaction mixture 
weights of neural network 
input variables to the neural network 
chemical species 
concentration of any species X 
desired output variables 
ith moment of the radical size distribution 

Greek letters 

A H  average heat of polymerization 
77 

network training 
hi 

reacting mixture 
XL 

carbon atoms 
AS 

carbon atoms 
P density 
Wi 

- 

damping or accelerating factor for neural 

monomer or radical mole fractions in the 

number of long-chain branches per 1000 

number of short-chain branches per 1000 

monomer or radical mole fractions in the 
reacting mixture 

Subscripts and Superscripts 

i, j 
s ,  L 
u, u 

- terminal double bond 

monomer type i or j repeat units 
short- and long-chain branches 
indices of the neural network weights 
internal radical I 

- 
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